3OFI

Crystal structure of human insulin-degrading enzyme in complex with ubiquitin


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.35 Å
  • R-Value Free: 0.240 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.211 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Ubiquitin is a novel substrate for human insulin-degrading enzyme.

Ralat, L.A.Kalas, V.Zheng, Z.Goldman, R.D.Sosnick, T.R.Tang, W.J.

(2011) J Mol Biol 406: 454-466

  • DOI: https://doi.org/10.1016/j.jmb.2010.12.026
  • Primary Citation of Related Structures:  
    3OFI

  • PubMed Abstract: 

    Insulin-degrading enzyme (IDE) can degrade insulin and amyloid-β, peptides involved in diabetes and Alzheimer's disease, respectively. IDE selects its substrates based on size, charge, and flexibility. From these criteria, we predict that IDE can cleave and inactivate ubiquitin (Ub). Here, we show that IDE cleaves Ub in a biphasic manner, first, by rapidly removing the two C-terminal glycines (k(cat)=2 s(-1)) followed by a slow cleavage between residues 72 and 73 (k(cat)=0.07 s(-1)), thereby producing the inactive 1-74 fragment of Ub (Ub1-74) and 1-72 fragment of Ub (Ub1-72). IDE is a ubiquitously expressed cytosolic protein, where monomeric Ub is also present. Thus, Ub degradation by IDE should be regulated. IDE is known to bind the cytoplasmic intermediate filament protein nestin with high affinity. We found that nestin potently inhibits the cleavage of Ub by IDE. In addition, Ub1-72 has a markedly increased affinity for IDE (∼90-fold). Thus, the association of IDE with cellular regulators and product inhibition by Ub1-72 can prevent inadvertent proteolysis of cellular Ub by IDE. Ub is a highly stable protein. However, IDE instead prefers to degrade peptides with high intrinsic flexibility. Indeed, we demonstrate that IDE is exquisitely sensitive to Ub stability. Mutations that only mildly destabilize Ub (ΔΔG<0.6 kcal/mol) render IDE hypersensitive to Ub with rate enhancements greater than 12-fold. The Ub-bound IDE structure and IDE mutants reveal that the interaction of the exosite with the N-terminus of Ub guides the unfolding of Ub, allowing its sequential cleavages. Together, our studies link the control of Ub clearance with IDE.


  • Organizational Affiliation

    Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Insulin-degrading enzyme
A, B
990Homo sapiensMutation(s): 14 
Gene Names: IDE
EC: 3.4.24.56
UniProt & NIH Common Fund Data Resources
Find proteins for P14735 (Homo sapiens)
Explore P14735 
Go to UniProtKB:  P14735
PHAROS:  P14735
GTEx:  ENSG00000119912 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP14735
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Ubiquitin
C, D
76Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P0CG48 (Homo sapiens)
Explore P0CG48 
Go to UniProtKB:  P0CG48
PHAROS:  P0CG48
GTEx:  ENSG00000150991 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0CG48
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.35 Å
  • R-Value Free: 0.240 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.211 
  • Space Group: P 65
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 262.943α = 90
b = 262.943β = 90
c = 90.968γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
REFMACrefinement
PDB_EXTRACTdata extraction
CNSrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-09-08
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2017-11-08
    Changes: Refinement description
  • Version 1.3: 2023-09-06
    Changes: Data collection, Database references, Derived calculations, Refinement description