6VSB

Prefusion 2019-nCoV spike glycoprotein with a single receptor-binding domain up


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.46 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation 3D Report Full Report



Literature

Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.

Wrapp, D.Wang, N.Corbett, K.S.Goldsmith, J.A.Hsieh, C.L.Abiona, O.Graham, B.S.McLellan, J.S.

(2020) Science 367: 1260-1263

  • DOI: 10.1126/science.abb2507
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • The outbreak of a novel coronavirus (2019-nCoV) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for vaccines, therapeutic antibodies, and diagnostics ...

    The outbreak of a novel coronavirus (2019-nCoV) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure development, we determined a 3.5-angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. We also provide biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S. Additionally, we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs. The structure of 2019-nCoV S should enable the rapid development and evaluation of medical countermeasures to address the ongoing public health crisis.


    Organizational Affiliation

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA. jmclellan@austin.utexas.edu.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
SARS-CoV-2 spike glycoproteinA, B, C1288Severe acute respiratory syndrome coronavirus 2Mutation(s): 5 
Gene Names: S2
Find proteins for P0DTC2 (Severe acute respiratory syndrome coronavirus 2)
Explore P0DTC2 
Go to UniProtKB:  P0DTC2
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Oligosaccharides
Entity ID: 2
MoleculeChainsChain Length2D Diagram Glycosylation
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
A, B, C
2 N-Glycosylation
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NAG
Query on NAG

Download CCD File 
A, B, C
2-acetamido-2-deoxy-beta-D-glucopyranose
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.46 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)United StatesR01-AI127521

Revision History 

  • Version 1.0: 2020-02-26
    Type: Initial release
  • Version 1.1: 2020-03-04
    Changes: Database references
  • Version 1.2: 2020-03-25
    Changes: Database references
  • Version 1.3: 2020-04-01
    Changes: Source and taxonomy, Structure summary
  • Version 1.4: 2020-05-06
    Changes: Database references, Source and taxonomy, Structure summary
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Advisory, Atomic model, Data collection, Derived calculations, Structure summary