1OMO

alanine dehydrogenase dimer w/bound NAD (archaeal)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.32 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.213 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Structure of alanine dehydrogenase from Archaeoglobus: active site analysis and relation to bacterial cyclodeaminases and mammalian mu crystallin.

Gallagher, D.T.Monbouquette, H.G.Schroeder, I.Robinson, H.Holden, M.J.Smith, N.N.

(2004) J Mol Biol 342: 119-130

  • DOI: https://doi.org/10.1016/j.jmb.2004.06.090
  • Primary Citation of Related Structures:  
    1OMO

  • PubMed Abstract: 

    The hyperthermophilic archaeon Archaeoglobus fulgidus contains an L-Ala dehydrogenase (AlaDH, EC 1.4.1.1) that is not homologous to known bacterial dehydrogenases and appears to represent a previously unrecognized archaeal group of NAD-dependent dehydrogenases. The gene (Genbank; TIGR AF1665) was annotated initially as an ornithine cyclodeaminase (OCD) on the basis of strong homology with the mu crystallin/OCD protein family. We report the structure of the NAD-bound AF1665 AlaDH (AF-AlaDH) at 2.3 A in a C2 crystal form with the 70 kDa dimer in the asymmetric unit, as the first structural representative of this family. Consistent with its lack of homology to bacterial AlaDH proteins, which are mostly hexameric, the archaeal dimer has a novel structure. Although both types of AlaDH enzyme include a Rossmann-type NAD-binding domain, the arrangement of strands in the C-terminal half of this domain is novel, and the other (catalytic) domain in the archaeal protein has a new fold. The active site presents a cluster of conserved Arg and Lys side-chains over the pro-R face of the cofactor. In addition, the best ordered of the 338 water molecules in the structure is positioned well for mechanistic interaction. The overall structure and active site are compared with other dehydrogenases, including the AlaDH from Phormidium lapideum. Implications for the catalytic mechanism and for the structures of homologs are considered. The archaeal AlaDH represents an ancient and previously undescribed subclass of Rossmann-fold proteins that includes bacterial ornithine and lysine cyclodeaminases, marsupial lens proteins and, in man, a thyroid hormone-binding protein that exhibits 30% sequence identity with AF1665.


  • Organizational Affiliation

    Biotechnology Division of the National Institute of Standards and Technology, Gaithersburg, MD 20899-8312, USA. travis.gallagher@nist.gov


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
alanine dehydrogenase
A, B
322Archaeoglobus fulgidusMutation(s): 0 
EC: 1.4.1.1
UniProt
Find proteins for O28608 (Archaeoglobus fulgidus (strain ATCC 49558 / DSM 4304 / JCM 9628 / NBRC 100126 / VC-16))
Explore O28608 
Go to UniProtKB:  O28608
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO28608
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.32 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.213 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 108.7α = 90
b = 55.5β = 111.1
c = 131.3γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
SOLVEphasing
CNSrefinement

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-07-06
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-14
    Changes: Data collection, Database references, Derived calculations