1SJ2

Crystal structure of Mycobacterium tuberculosis catalase-peroxidase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.41 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.211 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Crystal Structure of Mycobacterium tuberculosis Catalase-Peroxidase.

Bertrand, T.Eady, N.A.J.Jones, J.N.JesminNagy, J.M.Jamart-Gregoire, B.Raven, E.L.Brown, K.A.

(2004) J Biol Chem 279: 38991-38999

  • DOI: https://doi.org/10.1074/jbc.M402382200
  • Primary Citation of Related Structures:  
    1SJ2

  • PubMed Abstract: 

    The Mycobacterium tuberculosis catalase-peroxidase is a multifunctional heme-dependent enzyme that activates the core anti-tuberculosis drug isoniazid. Numerous studies have been undertaken to elucidate the enzyme-dependent mechanism of isoniazid activation, and it is well documented that mutations that reduce activity or inactivate the catalase-peroxidase lead to increased levels of isoniazid resistance in M. tuberculosis. Interpretation of the catalytic activities and the effects of mutations upon the action of the enzyme to date have been limited due to the lack of a three-dimensional structure for this enzyme. In order to provide a more accurate model of the three-dimensional structure of the M. tuberculosis catalase-peroxidase, we have crystallized the enzyme and now report its crystal structure refined to 2.4-A resolution. The structure reveals new information about dimer assembly and provides information about the location of residues that may play a role in catalysis including candidates for protein-based radical formation. Modeling and computational studies suggest that the binding site for isoniazid is located near the delta-meso heme edge rather than in a surface loop structure as currently proposed. The availability of a crystal structure for the M. tuberculosis catalase-peroxidase also permits structural and functional effects of mutations implicated in causing elevated levels of isoniazid resistance in clinical isolates to be interpreted with improved confidence.


  • Organizational Affiliation

    Department of Biological Sciences, Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College London, London SW7 2AZ, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Peroxidase/catalase T
A, B
743Mycobacterium tuberculosisMutation(s): 0 
Gene Names: KATGRV1908CMT1959MTCY180.10
EC: 1.11.1.6 (PDB Primary Data), 1.11.1.21 (UniProt)
UniProt
Find proteins for P9WIE5 (Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv))
Explore P9WIE5 
Go to UniProtKB:  P9WIE5
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP9WIE5
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.41 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.211 
  • Space Group: P 42 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 150.33α = 90
b = 150.33β = 90
c = 154.281γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-07-20
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2023-08-23
    Changes: Data collection, Database references, Derived calculations, Refinement description