2ZMF

Crystal structure of the C-terminal GAF domain of human phosphodiesterase 10A


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.200 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Crystal Structure of the GAF-B Domain from Human Phosphodiesterase 10A Complexed with Its Ligand, cAMP

Handa, N.Mizohata, E.Kishishita, S.Toyama, M.Morita, S.Uchikubo-Kamo, T.Akasaka, R.Omori, K.Kotera, J.Terada, T.Shirouzu, M.Yokoyama, S.

(2008) J Biol Chem 283: 19657-19664

  • DOI: https://doi.org/10.1074/jbc.M800595200
  • Primary Citation of Related Structures:  
    2ZMF

  • PubMed Abstract: 

    Cyclic nucleotide phosphodiesterases (PDEs) catalyze the degradation of the cyclic nucleotides cAMP and cGMP, which are important second messengers. Five of the 11 mammalian PDE families have tandem GAF domains at their N termini. PDE10A may be the only mammalian PDE for which cAMP is the GAF domain ligand, and it may be allosterically stimulated by cAMP. PDE10A is highly expressed in striatal medium spiny neurons. Here we report the crystal structure of the C-terminal GAF domain (GAF-B) of human PDE10A complexed with cAMP at 2.1-angstroms resolution. The conformation of the PDE10A GAF-B domain monomer closely resembles those of the GAF domains of PDE2A and the cyanobacterium Anabaena cyaB2 adenylyl cyclase, except for the helical bundle consisting of alpha1, alpha2, and alpha5. The PDE10A GAF-B domain forms a dimer in the crystal and in solution. The dimerization is mainly mediated by hydrophobic interactions between the helical bundles in a parallel arrangement, with a large buried surface area. In the PDE10A GAF-B domain, cAMP tightly binds to a cNMP-binding pocket. The residues in the alpha3 and alpha4 helices, the beta6 strand, the loop between 3(10) and alpha4, and the loop between alpha4 and beta5 are involved in the recognition of the phosphate and ribose moieties. This recognition mode is similar to those of the GAF domains of PDE2A and cyaB2. In contrast, the adenine base is specifically recognized by the PDE10A GAF-B domain in a unique manner, through residues in the beta1 and beta2 strands.


  • Organizational Affiliation

    Systems and Structural Biology Center, Yokohama Institute, RIKEN, Yokohama 230-0045, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
cAMP and cAMP-inhibited cGMP 3',5'-cyclic phosphodiesterase 10A
A, B
189Homo sapiensMutation(s): 0 
Gene Names: PDE10A
EC: 3.1.4.17
UniProt & NIH Common Fund Data Resources
Find proteins for Q9Y233 (Homo sapiens)
Go to UniProtKB:  Q9Y233
PHAROS:  Q9Y233
GTEx:  ENSG00000112541 
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CMP
Query on CMP

Download Ideal Coordinates CCD File 
C [auth A],
D [auth B]
ADENOSINE-3',5'-CYCLIC-MONOPHOSPHATE
C10 H12 N5 O6 P
IVOMOUWHDPKRLL-KQYNXXCUSA-N
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MSE
Query on MSE
A, B
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.200 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 74.506α = 90
b = 74.506β = 90
c = 146.524γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling
SOLVEphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-04-29
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Advisory, Version format compliance
  • Version 1.2: 2024-10-16
    Changes: Data collection, Database references, Derived calculations, Structure summary