Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.
Hattne, J., Echols, N., Tran, R., Kern, J., Gildea, R.J., Brewster, A.S., Alonso-Mori, R., Glockner, C., Hellmich, J., Laksmono, H., Sierra, R.G., Lassalle-Kaiser, B., Lampe, A., Han, G., Gul, S., DiFiore, D., Milathianaki, D., Fry, A.R., Miahnahri, A., White, W.E., Schafer, D.W., Seibert, M.M., Koglin, J.E., Sokaras, D., Weng, T.C., Sellberg, J., Latimer, M.J., Glatzel, P., Zwart, P.H., Grosse-Kunstleve, R.W., Bogan, M.J., Messerschmidt, M., Williams, G.J., Boutet, S., Messinger, J., Zouni, A., Yano, J., Bergmann, U., Yachandra, V.K., Adams, P.D., Sauter, N.K.(2014) Nat Methods 11: 545-548
- PubMed: 24633409 
- DOI: https://doi.org/10.1038/nmeth.2887
- Primary Citation of Related Structures:  
4OW3 - PubMed Abstract: 
X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.
Organizational Affiliation: 
Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.