1CB4

CRYSTAL STRUCTURE OF COPPER, ZINC SUPEROXIDE DISMUTASE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.185 
  • R-Value Observed: 0.186 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.5 of the entry. See complete history


Literature

Crystallographic structures of bovine copper-zinc superoxide dismutase reveal asymmetry in two subunits: functionally important three and five coordinate copper sites captured in the same crystal.

Hough, M.A.Hasnain, S.S.

(1999) J Mol Biol 287: 579-592

  • DOI: https://doi.org/10.1006/jmbi.1999.2610
  • Primary Citation of Related Structures:  
    1CB4, 1CBJ

  • PubMed Abstract: 

    A key feature of the generally accepted catalytic mechanism of CuZn superoxide dismutase (CuZnSOD) is the breakage of the imidazolate bridge between copper and zinc and the loss of a coordinated water molecule from copper on reduction from Cu(II) to Cu(I). Crystal structures exist for the enzyme from a number of sources in the oxidised, five coordinate copper form. For the reduced form two structures from different sources have been determined only recently but provide contradictory results. We present crystal structures of bovine CuZnSOD (BSOD) in two different space groups. The structure of the P212121 form (pBSOD), at 1.65 A resolution clearly shows one subunit with Cu in the five coordinate, oxidised form, and the other with Cu in the three coordinate form expected for the reduced state. This mixed state of pBSOD is confirmed by XANES data of these crystals. The pBSOD structure has thus captured each subunit in one of the two oxidation state conformations and thus provides direct crystallographic evidence for the superoxide dismutase mechanism involving the breakage of the imidazole bridge between Cu and Zn. A shift in the position of copper in subunit A poises the catalytic centre to undergo the first stage of catalysis via dissociation of Cu from His61 with a concomittant movement of the coordinated water molecule towards His61, which rotates by approximately 20 degrees, enabling it to form a hydrogen bond to the water molecule. The Cu-Zn separation in the reduced site is increased by approximately 0.5 A. In contrast the 2.3 A resolution structure in space group C2221 (cBSOD) shows both of the Cu atoms to be in the five coordinate, oxidised form but in this space group the whole of subunit A is significantly more disordered than subunit B. An examination of published structures of "oxidised" SODs, shows a trend towards longer Cu-Zn and Cu-His61 separations in subunit A, which together with the structures reported here indicate a potential functional asymmetry between the subunits of CuZnSODs. We also suggest that the increased separation between Cu and Zn is a precursor to breakage of His61.


  • Organizational Affiliation

    CLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PROTEIN (SUPEROXIDE DISMUTASE)
A, B
151Bos taurusMutation(s): 0 
EC: 1.15.1.1
UniProt
Find proteins for P00442 (Bos taurus)
Explore P00442 
Go to UniProtKB:  P00442
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00442
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.185 
  • R-Value Observed: 0.186 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 105.1α = 90
b = 199.18β = 90
c = 51.3γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
CCP4data reduction
AMoREphasing
REFMACrefinement
CCP4data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-03-03
    Type: Initial release
  • Version 1.1: 2007-10-16
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-27
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-04-03
    Changes: Refinement description
  • Version 1.5: 2024-11-06
    Changes: Structure summary