1FS3

CRYSTAL STRUCTURE OF WILD-TYPE BOVINE PANCREATIC RIBONUCLEASE A


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.217 
  • R-Value Observed: 0.217 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Conformational strictness required for maximum activity and stability of bovine pancreatic ribonuclease A as revealed by crystallographic study of three Phe120 mutants at 1.4 A resolution.

Chatani, E.Hayashi, R.Moriyama, H.Ueki, T.

(2002) Protein Sci 11: 72-81

  • DOI: https://doi.org/10.1110/ps.31102
  • Primary Citation of Related Structures:  
    1EIC, 1EID, 1EIE, 1FS3

  • PubMed Abstract: 

    The replacement of Phe120 with other hydrophobic residues causes a decrease in the activity and thermal stability in ribonuclease A (RNase A). To explain this, the crystal structures of wild-type RNase A and three mutants--F120A, F120G, and F120W--were analyzed up to a 1.4 A resolution. Although the overall backbone structures of all mutant samples were nearly the same as that of wild-type RNase A, except for the C-terminal region of F120G with a high B-factor, two local conformational changes were observed at His119 in the mutants. First, His119 of the wild-type and F120W RNase A adopted an A position, whereas those of F120A and F120G adopted a B position, but the static crystallographic position did not reflect either the efficiency of transphosphorylation or the hydrolysis reaction. Second, His119 imidazole rings of all mutant enzymes were deviated from that of wild-type RNase A, and those of F120W and F120G appeared to be "inside out" compared with that of wild-type RNase A. Only approximately 1 A change in the distance between N(epsilon2) of His12 and N(delta1) of His119 causes a drastic decrease in k(cat), indicating that the active site requires the strict positioning of the catalytic residues. A good correlation between the change in total accessible surface area of the pockets on the surface of the mutant enzymes and enthalpy change in their thermal denaturation also indicates that the effects caused by the replacements are not localized but extend to remote regions of the protein molecule.


  • Organizational Affiliation

    Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Ribonuclease A124Bos taurusMutation(s): 0 
EC: 3.1.27.5 (PDB Primary Data), 4.6.1.18 (UniProt)
UniProt
Find proteins for P61823 (Bos taurus)
Explore P61823 
Go to UniProtKB:  P61823
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP61823
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.217 
  • R-Value Observed: 0.217 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 64.046α = 90
b = 64.046β = 90
c = 63.355γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2002-02-13
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-10-30
    Changes: Data collection, Database references, Structure summary