3EV3

Crystal Structure of Ribonuclease A in 70% t-Butanol


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.68 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.207 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Multiple solvent crystal structures of ribonuclease A: An assessment of the method

Dechene, M.Wink, G.Smith, M.Swartz, P.Mattos, C.

(2009) Proteins 76: 861-881

  • DOI: https://doi.org/10.1002/prot.22393
  • Primary Citation of Related Structures:  
    3EUX, 3EUY, 3EUZ, 3EV0, 3EV1, 3EV2, 3EV3, 3EV4, 3EV5, 3EV6

  • PubMed Abstract: 

    The multiple solvent crystal structures (MSCS) method uses organic solvents to map the surfaces of proteins. It identifies binding sites and allows for a more thorough examination of protein plasticity and hydration than could be achieved by a single structure. The crystal structures of bovine pancreatic ribonuclease A (RNAse A) soaked in the following organic solvents are presented: 50% dioxane, 50% dimethylformamide, 70% dimethylsulfoxide, 70% 1,6-hexanediol, 70% isopropanol, 50% R,S,R-bisfuran alcohol, 70% t-butanol, 50% trifluoroethanol, or 1.0M trimethylamine-N-oxide. This set of structures is compared with four sets of crystal structures of RNAse A from the protein data bank (PDB) and with the solution NMR structure to assess the validity of previously untested assumptions associated with MSCS analysis. Plasticity from MSCS is the same as from PDB structures obtained in the same crystal form and deviates only at crystal contacts when compared to structures from a diverse set of crystal environments. Furthermore, there is a good correlation between plasticity as observed by MSCS and the dynamic regions seen by NMR. Conserved water binding sites are identified by MSCS to be those that are conserved in the sets of structures taken from the PDB. Comparison of the MSCS structures with inhibitor-bound crystal structures of RNAse A reveals that the organic solvent molecules identify key interactions made by inhibitor molecules, highlighting ligand binding hot-spots in the active site. The present work firmly establishes the relevance of information obtained by MSCS.


  • Organizational Affiliation

    Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Ribonuclease pancreatic
A, B
124Bos taurusMutation(s): 0 
EC: 3.1.27.5 (PDB Primary Data), 4.6.1.18 (UniProt)
UniProt
Find proteins for P61823 (Bos taurus)
Explore P61823 
Go to UniProtKB:  P61823
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP61823
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
TBU
Query on TBU

Download Ideal Coordinates CCD File 
C [auth B]TERTIARY-BUTYL ALCOHOL
C4 H10 O
DKGAVHZHDRPRBM-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.68 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.207 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 100.832α = 90
b = 32.712β = 90.64
c = 72.681γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
CNSrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-06-23
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2017-10-25
    Changes: Refinement description
  • Version 1.3: 2023-12-27
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-11-13
    Changes: Structure summary