5PNT

CRYSTAL STRUCTURE OF A HUMAN LOW MOLECULAR WEIGHT PHOSPHOTYROSYL PHOSPHATASE. IMPLICATIONS FOR SUBSTRATE SPECIFICITY


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.181 
  • R-Value Observed: 0.181 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Crystal structure of a human low molecular weight phosphotyrosyl phosphatase. Implications for substrate specificity.

Zhang, M.Stauffacher, C.V.Lin, D.Van Etten, R.L.

(1998) J Biol Chem 273: 21714-21720

  • DOI: https://doi.org/10.1074/jbc.273.34.21714
  • Primary Citation of Related Structures:  
    5PNT

  • PubMed Abstract: 

    The low molecular weight phosphotyrosine phosphatases (PTPases) constitute a distinctive class of phosphotyrosine phosphatases that is widely distributed among vertebrate and invertebrate organisms. In vertebrates, two isoenzymes of these low molecular weight PTPases are commonly expressed. The two human isoenzymes, HCPTPA and HCPTPB, differ in an alternatively spliced sequence (residues 40-73) referred to as the variable loop, resulting in isoenzymes that have different substrate specificities and inhibitor/activator responses. We present here the x-ray crystallographic structure of a human low molecular weight PTPase solved by molecular replacement to 2.2 A. The structure of human low molecular weight PTPase is compared with a structure representing the other isoenzyme in this PTPase class, in each case with a sulfonate inhibitor bound to the active site. Possible aromatic residue interactions with the phosphotyrosine substrate are proposed from an examination of the binding site of the inhibitors. Differences are observed in the variable loop region, which forms one wall and the floor of a long crevice leading from the active-site loop. A set of residues lying along this crevice (amino acids 49, 50, and 53) is suggested to be responsible for differences in substrate specificity in these two enzymes.


  • Organizational Affiliation

    Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
LOW MOLECULAR WEIGHT PHOSPHOTYROSYL PHOSPHATASE157Homo sapiensMutation(s): 0 
EC: 3.1.3.2 (PDB Primary Data), 3.1.3.48 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for P24666 (Homo sapiens)
Explore P24666 
Go to UniProtKB:  P24666
PHAROS:  P24666
GTEx:  ENSG00000143727 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP24666
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
MES
Query on MES

Download Ideal Coordinates CCD File 
B [auth A]2-(N-MORPHOLINO)-ETHANESULFONIC ACID
C6 H13 N O4 S
SXGZJKUKBWWHRA-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.181 
  • R-Value Observed: 0.181 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 34.1α = 90
b = 56.6β = 90
c = 97.3γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
DENZOdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-10-14
    Type: Initial release
  • Version 1.1: 2008-03-25
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-09
    Changes: Database references, Derived calculations, Other, Refinement description
  • Version 1.4: 2024-05-22
    Changes: Data collection