4ZBE

Crystal structure of KPC-2 beta-lactamase complexed with avibactam


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.152 
  • R-Value Observed: 0.156 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Inhibition of Klebsiella beta-Lactamases (SHV-1 and KPC-2) by Avibactam: A Structural Study.

Krishnan, N.P.Nguyen, N.Q.Papp-Wallace, K.M.Bonomo, R.A.van den Akker, F.

(2015) PLoS One 10: e0136813-e0136813

  • DOI: https://doi.org/10.1371/journal.pone.0136813
  • Primary Citation of Related Structures:  
    4ZAM, 4ZBE

  • PubMed Abstract: 

    β-Lactamase inhibition is an important clinical strategy in overcoming β-lactamase-mediated resistance to β-lactam antibiotics in Gram negative bacteria. A new β-lactamase inhibitor, avibactam, is entering the clinical arena and promising to be a major step forward in our antibiotic armamentarium. Avibactam has remarkable broad-spectrum activity in being able to inhibit classes A, C, and some class D β-lactamases. We present here structural investigations into class A β-lactamase inhibition by avibactam as we report the crystal structures of SHV-1, the chromosomal penicillinase of Klebsiella pneumoniae, and KPC-2, an acquired carbapenemase found in the same pathogen, complexed with avibactam. The 1.80 Å KPC-2 and 1.42 Å resolution SHV-1 β-lactamase avibactam complex structures reveal avibactam covalently bonded to the catalytic S70 residue. Analysis of the interactions and chair-shaped conformation of avibactam bound to the active sites of KPC-2 and SHV-1 provides structural insights into recently laboratory-generated amino acid substitutions that result in resistance to avibactam in KPC-2 and SHV-1. Furthermore, we observed several important differences in the interactions with amino acid residues, in particular that avibactam forms hydrogen bonds to S130 in KPC-2 but not in SHV-1, that can possibly explain some of the different kinetic constants of inhibition. Our observations provide a possible reason for the ability of KPC-2 β-lactamase to slowly desulfate avibactam with a potential role for the stereochemistry around the N1 atom of avibactam and/or the presence of an active site water molecule that could aid in avibactam desulfation, an unexpected consequence of novel inhibition chemistry.


  • Organizational Affiliation

    Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, United States of America.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Carbapenem-hydrolyzing beta-lactamase KPC264Klebsiella pneumoniaeMutation(s): 0 
Gene Names: blakpckpc1
EC: 3.5.2.6
UniProt
Find proteins for Q9F663 (Klebsiella pneumoniae)
Explore Q9F663 
Go to UniProtKB:  Q9F663
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9F663
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NXL
Query on NXL

Download Ideal Coordinates CCD File 
C [auth A](2S,5R)-1-formyl-5-[(sulfooxy)amino]piperidine-2-carboxamide
C7 H13 N3 O6 S
WJDGWXPPFHLLNL-RITPCOANSA-N
CIT
Query on CIT

Download Ideal Coordinates CCD File 
B [auth A]CITRIC ACID
C6 H8 O7
KRKNYBCHXYNGOX-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.152 
  • R-Value Observed: 0.156 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 51.315α = 90
b = 66.695β = 90
c = 73.208γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2016-01-27
    Type: Initial release
  • Version 1.1: 2023-09-27
    Changes: Data collection, Database references, Derived calculations, Refinement description, Structure summary
  • Version 1.2: 2024-10-23
    Changes: Structure summary